Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2140-2143, 2021 11.
Article in English | MEDLINE | ID: covidwho-1566193

ABSTRACT

The world has been affected by COVID-19 coronavirus. At the time of this study, the number of infected people in the United States is the highest globally (31.2 million infections). Within the infected population, patients diagnosed with acute respiratory distress syndrome (ARDS) are in more life-threatening circumstances, resulting in severe respiratory system failure. Various studies have investigated the infections to COVID-19 and ARDS by monitoring laboratory metrics and symptoms. Unfortunately, these methods are merely limited to clinical settings, and symptom-based methods are shown to be ineffective. In contrast, vital signs (e.g., heart rate) have been utilized to early-detect different respiratory diseases in ubiquitous health monitoring. We posit that such biomarkers are informative in identifying ARDS patients infected with COVID-19. In this study, we investigate the behavior of COVID-19 on ARDS patients by utilizing simple vital signs. We analyze the long-term daily logs of blood pressure (BP) and heart rate (HR) associated with 150 ARDS patients admitted to five University of California academic health centers (containing 77,972 samples for each vital sign) to distinguish subjects with COVID-19 positive and negative test results. In addition to the statistical analysis, we develop a deep neural network model to extract features from the longitudinal data. Our deep learning model is able to achieve 0.81 area under the curve (AUC) to classify the vital signs of ARDS patients infected with COVID-19 versus other ARDS diagnosed patients. Since our proposed model uses only the BP and HR, it would be possible to review data prior to the first reported cases in the U.S. to validate the presence or absence of COVID-19 in our communities prior to January 2020. In addition, by utilizing wearable devices, and monitoring vital signs of subjects in everyday settings it is possible to early-detect COVID-19 without visiting a hospital or a care site.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Blood Pressure , Heart Rate , Humans , Respiratory Distress Syndrome/diagnosis , SARS-CoV-2
2.
PLoS One ; 16(2): e0246494, 2021.
Article in English | MEDLINE | ID: covidwho-1061100

ABSTRACT

BACKGROUND: Technology enables the continuous monitoring of personal health parameter data during pregnancy regardless of the disruption of normal daily life patterns. Our research group has established a project investigating the usefulness of an Internet of Things-based system and smartwatch technology for monitoring women during pregnancy to explore variations in stress, physical activity and sleep. The aim of this study was to examine daily patterns of well-being in pregnant women before and during the national stay-at-home restrictions related to the COVID-19 pandemic in Finland. METHODS: A longitudinal cohort study design was used to monitor pregnant women in their everyday settings. Two cohorts of pregnant women were recruited. In the first wave in January-December 2019, pregnant women with histories of preterm births (gestational weeks 22-36) or late miscarriages (gestational weeks 12-21); and in the second wave between October 2019 and March 2020, pregnant women with histories of full-term births (gestational weeks 37-42) and no pregnancy losses were recruited. The final sample size for this study was 38 pregnant women. The participants continuously used the Samsung Gear Sport smartwatch and their heart rate variability, and physical activity and sleep data were collected. Subjective stress, activity and sleep reports were collected using a smartphone application developed for this study. Data between February 12 to April 8, 2020 were included to cover four-week periods before and during the national stay-at-home restrictions. Hierarchical linear mixed models were exploited to analyze the trends in the outcome variables. RESULTS: The pandemic-related restrictions were associated with changes in heart rate variability: the standard deviation of all normal inter-beat intervals (p = 0.034), low-frequency power (p = 0.040) and the low-frequency/high-frequency ratio (p = 0.013) increased compared with the weeks before the restrictions. Women's subjectively evaluated stress levels also increased significantly. Physical activity decreased when the restrictions were set and as pregnancy proceeded. The total sleep time also decreased as pregnancy proceeded, but pandemic-related restrictions were not associated with sleep. Daily rhythms changed in that the participants overall started to sleep later and woke up later. CONCLUSIONS: The findings showed that Finnish pregnant women coped well with the pandemic-related restrictions and lockdown environment in terms of stress, physical activity and sleep.


Subject(s)
COVID-19/pathology , Life Style , Pregnant Women , Abortion, Spontaneous , Adult , COVID-19/epidemiology , COVID-19/virology , Exercise , Female , Finland , Heart Rate , Humans , Longitudinal Studies , Pregnancy , Pregnant Women/psychology , Premature Birth , SARS-CoV-2/isolation & purification , Sleep/physiology , Smartphone , Stress, Psychological
SELECTION OF CITATIONS
SEARCH DETAIL